3.8.50 \(\int \frac {x^{5/2}}{(a+c x^4)^2} \, dx\) [750]

Optimal. Leaf size=308 \[ \frac {x^{7/2}}{4 a \left (a+c x^4\right )}+\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{9/8} c^{7/8}}-\frac {\tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{9/8} c^{7/8}}-\frac {\tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}-\frac {\log \left (\sqrt [4]{-a}-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{9/8} c^{7/8}}+\frac {\log \left (\sqrt [4]{-a}+\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{9/8} c^{7/8}} \]

[Out]

1/4*x^(7/2)/a/(c*x^4+a)-1/16*arctan(c^(1/8)*x^(1/2)/(-a)^(1/8))/(-a)^(9/8)/c^(7/8)+1/16*arctanh(c^(1/8)*x^(1/2
)/(-a)^(1/8))/(-a)^(9/8)/c^(7/8)-1/32*arctan(-1+c^(1/8)*2^(1/2)*x^(1/2)/(-a)^(1/8))/(-a)^(9/8)/c^(7/8)*2^(1/2)
-1/32*arctan(1+c^(1/8)*2^(1/2)*x^(1/2)/(-a)^(1/8))/(-a)^(9/8)/c^(7/8)*2^(1/2)-1/64*ln((-a)^(1/4)+c^(1/4)*x-(-a
)^(1/8)*c^(1/8)*2^(1/2)*x^(1/2))/(-a)^(9/8)/c^(7/8)*2^(1/2)+1/64*ln((-a)^(1/4)+c^(1/4)*x+(-a)^(1/8)*c^(1/8)*2^
(1/2)*x^(1/2))/(-a)^(9/8)/c^(7/8)*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 308, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.800, Rules used = {296, 335, 307, 303, 1176, 631, 210, 1179, 642, 304, 211, 214} \begin {gather*} \frac {\text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{9/8} c^{7/8}}-\frac {\text {ArcTan}\left (\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}+1\right )}{16 \sqrt {2} (-a)^{9/8} c^{7/8}}-\frac {\text {ArcTan}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}-\frac {\log \left (-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{-a}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{9/8} c^{7/8}}+\frac {\log \left (\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{-a}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{9/8} c^{7/8}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac {x^{7/2}}{4 a \left (a+c x^4\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(5/2)/(a + c*x^4)^2,x]

[Out]

x^(7/2)/(4*a*(a + c*x^4)) + ArcTan[1 - (Sqrt[2]*c^(1/8)*Sqrt[x])/(-a)^(1/8)]/(16*Sqrt[2]*(-a)^(9/8)*c^(7/8)) -
 ArcTan[1 + (Sqrt[2]*c^(1/8)*Sqrt[x])/(-a)^(1/8)]/(16*Sqrt[2]*(-a)^(9/8)*c^(7/8)) - ArcTan[(c^(1/8)*Sqrt[x])/(
-a)^(1/8)]/(16*(-a)^(9/8)*c^(7/8)) + ArcTanh[(c^(1/8)*Sqrt[x])/(-a)^(1/8)]/(16*(-a)^(9/8)*c^(7/8)) - Log[(-a)^
(1/4) - Sqrt[2]*(-a)^(1/8)*c^(1/8)*Sqrt[x] + c^(1/4)*x]/(32*Sqrt[2]*(-a)^(9/8)*c^(7/8)) + Log[(-a)^(1/4) + Sqr
t[2]*(-a)^(1/8)*c^(1/8)*Sqrt[x] + c^(1/4)*x]/(32*Sqrt[2]*(-a)^(9/8)*c^(7/8))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 307

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b
, 2]]}, Dist[s/(2*b), Int[x^(m - n/2)/(r + s*x^(n/2)), x], x] - Dist[s/(2*b), Int[x^(m - n/2)/(r - s*x^(n/2)),
 x], x]] /; FreeQ[{a, b}, x] && IGtQ[n/4, 0] && IGtQ[m, 0] && LeQ[n/2, m] && LtQ[m, n] &&  !GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {x^{5/2}}{\left (a+c x^4\right )^2} \, dx &=\frac {x^{7/2}}{4 a \left (a+c x^4\right )}+\frac {\int \frac {x^{5/2}}{a+c x^4} \, dx}{8 a}\\ &=\frac {x^{7/2}}{4 a \left (a+c x^4\right )}+\frac {\text {Subst}\left (\int \frac {x^6}{a+c x^8} \, dx,x,\sqrt {x}\right )}{4 a}\\ &=\frac {x^{7/2}}{4 a \left (a+c x^4\right )}-\frac {\text {Subst}\left (\int \frac {x^2}{\sqrt {-a}-\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{8 a \sqrt {c}}+\frac {\text {Subst}\left (\int \frac {x^2}{\sqrt {-a}+\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{8 a \sqrt {c}}\\ &=\frac {x^{7/2}}{4 a \left (a+c x^4\right )}-\frac {\text {Subst}\left (\int \frac {1}{\sqrt [4]{-a}-\sqrt [4]{c} x^2} \, dx,x,\sqrt {x}\right )}{16 a c^{3/4}}+\frac {\text {Subst}\left (\int \frac {1}{\sqrt [4]{-a}+\sqrt [4]{c} x^2} \, dx,x,\sqrt {x}\right )}{16 a c^{3/4}}-\frac {\text {Subst}\left (\int \frac {\sqrt [4]{-a}-\sqrt [4]{c} x^2}{\sqrt {-a}+\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{16 a c^{3/4}}+\frac {\text {Subst}\left (\int \frac {\sqrt [4]{-a}+\sqrt [4]{c} x^2}{\sqrt {-a}+\sqrt {c} x^4} \, dx,x,\sqrt {x}\right )}{16 a c^{3/4}}\\ &=\frac {x^{7/2}}{4 a \left (a+c x^4\right )}-\frac {\tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac {\text {Subst}\left (\int \frac {1}{\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}-\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{32 a c}+\frac {\text {Subst}\left (\int \frac {1}{\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}+\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{32 a c}-\frac {\text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [8]{-a}}{\sqrt [8]{c}}+2 x}{-\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}-\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{32 \sqrt {2} (-a)^{9/8} c^{7/8}}-\frac {\text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [8]{-a}}{\sqrt [8]{c}}-2 x}{-\frac {\sqrt [4]{-a}}{\sqrt [4]{c}}+\frac {\sqrt {2} \sqrt [8]{-a} x}{\sqrt [8]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{32 \sqrt {2} (-a)^{9/8} c^{7/8}}\\ &=\frac {x^{7/2}}{4 a \left (a+c x^4\right )}-\frac {\tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}-\frac {\log \left (\sqrt [4]{-a}-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{9/8} c^{7/8}}+\frac {\log \left (\sqrt [4]{-a}+\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{9/8} c^{7/8}}-\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{9/8} c^{7/8}}+\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{9/8} c^{7/8}}\\ &=\frac {x^{7/2}}{4 a \left (a+c x^4\right )}+\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{9/8} c^{7/8}}-\frac {\tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 \sqrt {2} (-a)^{9/8} c^{7/8}}-\frac {\tan ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{c} \sqrt {x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}-\frac {\log \left (\sqrt [4]{-a}-\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{9/8} c^{7/8}}+\frac {\log \left (\sqrt [4]{-a}+\sqrt {2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt {x}+\sqrt [4]{c} x\right )}{32 \sqrt {2} (-a)^{9/8} c^{7/8}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.14, size = 277, normalized size = 0.90 \begin {gather*} \frac {\frac {8 \sqrt [8]{a} x^{7/2}}{a+c x^4}-\frac {\sqrt {2+\sqrt {2}} \tan ^{-1}\left (\frac {\sqrt {1-\frac {1}{\sqrt {2}}} \left (\sqrt [4]{a}-\sqrt [4]{c} x\right )}{\sqrt [8]{a} \sqrt [8]{c} \sqrt {x}}\right )}{c^{7/8}}-\frac {\sqrt {2-\sqrt {2}} \tan ^{-1}\left (\frac {\sqrt {1+\frac {1}{\sqrt {2}}} \left (\sqrt [4]{a}-\sqrt [4]{c} x\right )}{\sqrt [8]{a} \sqrt [8]{c} \sqrt {x}}\right )}{c^{7/8}}-\frac {\sqrt {2+\sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt {2+\sqrt {2}} \sqrt [8]{a} \sqrt [8]{c} \sqrt {x}}{\sqrt [4]{a}+\sqrt [4]{c} x}\right )}{c^{7/8}}-\frac {\sqrt {2-\sqrt {2}} \tanh ^{-1}\left (\frac {\sqrt [8]{a} \sqrt [8]{c} \sqrt {-\left (\left (-2+\sqrt {2}\right ) x\right )}}{\sqrt [4]{a}+\sqrt [4]{c} x}\right )}{c^{7/8}}}{32 a^{9/8}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(5/2)/(a + c*x^4)^2,x]

[Out]

((8*a^(1/8)*x^(7/2))/(a + c*x^4) - (Sqrt[2 + Sqrt[2]]*ArcTan[(Sqrt[1 - 1/Sqrt[2]]*(a^(1/4) - c^(1/4)*x))/(a^(1
/8)*c^(1/8)*Sqrt[x])])/c^(7/8) - (Sqrt[2 - Sqrt[2]]*ArcTan[(Sqrt[1 + 1/Sqrt[2]]*(a^(1/4) - c^(1/4)*x))/(a^(1/8
)*c^(1/8)*Sqrt[x])])/c^(7/8) - (Sqrt[2 + Sqrt[2]]*ArcTanh[(Sqrt[2 + Sqrt[2]]*a^(1/8)*c^(1/8)*Sqrt[x])/(a^(1/4)
 + c^(1/4)*x)])/c^(7/8) - (Sqrt[2 - Sqrt[2]]*ArcTanh[(a^(1/8)*c^(1/8)*Sqrt[-((-2 + Sqrt[2])*x)])/(a^(1/4) + c^
(1/4)*x)])/c^(7/8))/(32*a^(9/8))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.14, size = 50, normalized size = 0.16

method result size
derivativedivides \(\frac {x^{\frac {7}{2}}}{4 a \left (x^{4} c +a \right )}+\frac {\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+a \right )}{\sum }\frac {\ln \left (\sqrt {x}-\textit {\_R} \right )}{\textit {\_R}}}{32 a c}\) \(50\)
default \(\frac {x^{\frac {7}{2}}}{4 a \left (x^{4} c +a \right )}+\frac {\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+a \right )}{\sum }\frac {\ln \left (\sqrt {x}-\textit {\_R} \right )}{\textit {\_R}}}{32 a c}\) \(50\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(5/2)/(c*x^4+a)^2,x,method=_RETURNVERBOSE)

[Out]

1/4*x^(7/2)/a/(c*x^4+a)+1/32/a/c*sum(1/_R*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+a))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(c*x^4+a)^2,x, algorithm="maxima")

[Out]

1/4*x^(7/2)/(a*c*x^4 + a^2) + integrate(1/8*x^(5/2)/(a*c*x^4 + a^2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 542 vs. \(2 (207) = 414\).
time = 0.39, size = 542, normalized size = 1.76 \begin {gather*} \frac {16 \, x^{\frac {7}{2}} - 4 \, \sqrt {2} {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {1}{8}} \arctan \left (\sqrt {2} \sqrt {\sqrt {2} a^{8} c^{6} \sqrt {x} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {7}{8}} - a^{7} c^{5} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {3}{4}} + x} a c \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {1}{8}} - \sqrt {2} a c \sqrt {x} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {1}{8}} + 1\right ) - 4 \, \sqrt {2} {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {1}{8}} \arctan \left (\sqrt {2} \sqrt {-\sqrt {2} a^{8} c^{6} \sqrt {x} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {7}{8}} - a^{7} c^{5} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {3}{4}} + x} a c \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {1}{8}} - \sqrt {2} a c \sqrt {x} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {1}{8}} - 1\right ) + \sqrt {2} {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {1}{8}} \log \left (\sqrt {2} a^{8} c^{6} \sqrt {x} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {7}{8}} - a^{7} c^{5} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {3}{4}} + x\right ) - \sqrt {2} {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {1}{8}} \log \left (-\sqrt {2} a^{8} c^{6} \sqrt {x} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {7}{8}} - a^{7} c^{5} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {3}{4}} + x\right ) - 8 \, {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {1}{8}} \arctan \left (\sqrt {-a^{7} c^{5} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {3}{4}} + x} a c \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {1}{8}} - a c \sqrt {x} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {1}{8}}\right ) + 2 \, {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {1}{8}} \log \left (a^{8} c^{6} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {7}{8}} + \sqrt {x}\right ) - 2 \, {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {1}{8}} \log \left (-a^{8} c^{6} \left (-\frac {1}{a^{9} c^{7}}\right )^{\frac {7}{8}} + \sqrt {x}\right )}{64 \, {\left (a c x^{4} + a^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(c*x^4+a)^2,x, algorithm="fricas")

[Out]

1/64*(16*x^(7/2) - 4*sqrt(2)*(a*c*x^4 + a^2)*(-1/(a^9*c^7))^(1/8)*arctan(sqrt(2)*sqrt(sqrt(2)*a^8*c^6*sqrt(x)*
(-1/(a^9*c^7))^(7/8) - a^7*c^5*(-1/(a^9*c^7))^(3/4) + x)*a*c*(-1/(a^9*c^7))^(1/8) - sqrt(2)*a*c*sqrt(x)*(-1/(a
^9*c^7))^(1/8) + 1) - 4*sqrt(2)*(a*c*x^4 + a^2)*(-1/(a^9*c^7))^(1/8)*arctan(sqrt(2)*sqrt(-sqrt(2)*a^8*c^6*sqrt
(x)*(-1/(a^9*c^7))^(7/8) - a^7*c^5*(-1/(a^9*c^7))^(3/4) + x)*a*c*(-1/(a^9*c^7))^(1/8) - sqrt(2)*a*c*sqrt(x)*(-
1/(a^9*c^7))^(1/8) - 1) + sqrt(2)*(a*c*x^4 + a^2)*(-1/(a^9*c^7))^(1/8)*log(sqrt(2)*a^8*c^6*sqrt(x)*(-1/(a^9*c^
7))^(7/8) - a^7*c^5*(-1/(a^9*c^7))^(3/4) + x) - sqrt(2)*(a*c*x^4 + a^2)*(-1/(a^9*c^7))^(1/8)*log(-sqrt(2)*a^8*
c^6*sqrt(x)*(-1/(a^9*c^7))^(7/8) - a^7*c^5*(-1/(a^9*c^7))^(3/4) + x) - 8*(a*c*x^4 + a^2)*(-1/(a^9*c^7))^(1/8)*
arctan(sqrt(-a^7*c^5*(-1/(a^9*c^7))^(3/4) + x)*a*c*(-1/(a^9*c^7))^(1/8) - a*c*sqrt(x)*(-1/(a^9*c^7))^(1/8)) +
2*(a*c*x^4 + a^2)*(-1/(a^9*c^7))^(1/8)*log(a^8*c^6*(-1/(a^9*c^7))^(7/8) + sqrt(x)) - 2*(a*c*x^4 + a^2)*(-1/(a^
9*c^7))^(1/8)*log(-a^8*c^6*(-1/(a^9*c^7))^(7/8) + sqrt(x)))/(a*c*x^4 + a^2)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(5/2)/(c*x**4+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 462 vs. \(2 (207) = 414\).
time = 1.08, size = 462, normalized size = 1.50 \begin {gather*} \frac {x^{\frac {7}{2}}}{4 \, {\left (c x^{4} + a\right )} a} + \frac {\left (\frac {a}{c}\right )^{\frac {7}{8}} \arctan \left (\frac {\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + 2 \, \sqrt {x}}{\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{16 \, a^{2} \sqrt {-2 \, \sqrt {2} + 4}} + \frac {\left (\frac {a}{c}\right )^{\frac {7}{8}} \arctan \left (-\frac {\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} - 2 \, \sqrt {x}}{\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{16 \, a^{2} \sqrt {-2 \, \sqrt {2} + 4}} + \frac {\left (\frac {a}{c}\right )^{\frac {7}{8}} \arctan \left (\frac {\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + 2 \, \sqrt {x}}{\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{16 \, a^{2} \sqrt {2 \, \sqrt {2} + 4}} + \frac {\left (\frac {a}{c}\right )^{\frac {7}{8}} \arctan \left (-\frac {\sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} - 2 \, \sqrt {x}}{\sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}}}\right )}{16 \, a^{2} \sqrt {2 \, \sqrt {2} + 4}} - \frac {\left (\frac {a}{c}\right )^{\frac {7}{8}} \log \left (\sqrt {x} \sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{32 \, a^{2} \sqrt {-2 \, \sqrt {2} + 4}} + \frac {\left (\frac {a}{c}\right )^{\frac {7}{8}} \log \left (-\sqrt {x} \sqrt {\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{32 \, a^{2} \sqrt {-2 \, \sqrt {2} + 4}} - \frac {\left (\frac {a}{c}\right )^{\frac {7}{8}} \log \left (\sqrt {x} \sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{32 \, a^{2} \sqrt {2 \, \sqrt {2} + 4}} + \frac {\left (\frac {a}{c}\right )^{\frac {7}{8}} \log \left (-\sqrt {x} \sqrt {-\sqrt {2} + 2} \left (\frac {a}{c}\right )^{\frac {1}{8}} + x + \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}{32 \, a^{2} \sqrt {2 \, \sqrt {2} + 4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(c*x^4+a)^2,x, algorithm="giac")

[Out]

1/4*x^(7/2)/((c*x^4 + a)*a) + 1/16*(a/c)^(7/8)*arctan((sqrt(-sqrt(2) + 2)*(a/c)^(1/8) + 2*sqrt(x))/(sqrt(sqrt(
2) + 2)*(a/c)^(1/8)))/(a^2*sqrt(-2*sqrt(2) + 4)) + 1/16*(a/c)^(7/8)*arctan(-(sqrt(-sqrt(2) + 2)*(a/c)^(1/8) -
2*sqrt(x))/(sqrt(sqrt(2) + 2)*(a/c)^(1/8)))/(a^2*sqrt(-2*sqrt(2) + 4)) + 1/16*(a/c)^(7/8)*arctan((sqrt(sqrt(2)
 + 2)*(a/c)^(1/8) + 2*sqrt(x))/(sqrt(-sqrt(2) + 2)*(a/c)^(1/8)))/(a^2*sqrt(2*sqrt(2) + 4)) + 1/16*(a/c)^(7/8)*
arctan(-(sqrt(sqrt(2) + 2)*(a/c)^(1/8) - 2*sqrt(x))/(sqrt(-sqrt(2) + 2)*(a/c)^(1/8)))/(a^2*sqrt(2*sqrt(2) + 4)
) - 1/32*(a/c)^(7/8)*log(sqrt(x)*sqrt(sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a^2*sqrt(-2*sqrt(2) + 4)) +
 1/32*(a/c)^(7/8)*log(-sqrt(x)*sqrt(sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a^2*sqrt(-2*sqrt(2) + 4)) - 1
/32*(a/c)^(7/8)*log(sqrt(x)*sqrt(-sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a^2*sqrt(2*sqrt(2) + 4)) + 1/32
*(a/c)^(7/8)*log(-sqrt(x)*sqrt(-sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/(a^2*sqrt(2*sqrt(2) + 4))

________________________________________________________________________________________

Mupad [B]
time = 0.13, size = 135, normalized size = 0.44 \begin {gather*} \frac {x^{7/2}}{4\,a\,\left (c\,x^4+a\right )}-\frac {\mathrm {atan}\left (\frac {c^{1/8}\,\sqrt {x}}{{\left (-a\right )}^{1/8}}\right )}{16\,{\left (-a\right )}^{9/8}\,c^{7/8}}-\frac {\mathrm {atan}\left (\frac {c^{1/8}\,\sqrt {x}\,1{}\mathrm {i}}{{\left (-a\right )}^{1/8}}\right )\,1{}\mathrm {i}}{16\,{\left (-a\right )}^{9/8}\,c^{7/8}}+\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,c^{1/8}\,\sqrt {x}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )}{{\left (-a\right )}^{1/8}}\right )\,\left (-\frac {1}{32}+\frac {1}{32}{}\mathrm {i}\right )}{{\left (-a\right )}^{9/8}\,c^{7/8}}+\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,c^{1/8}\,\sqrt {x}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )}{{\left (-a\right )}^{1/8}}\right )\,\left (-\frac {1}{32}-\frac {1}{32}{}\mathrm {i}\right )}{{\left (-a\right )}^{9/8}\,c^{7/8}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(5/2)/(a + c*x^4)^2,x)

[Out]

x^(7/2)/(4*a*(a + c*x^4)) - atan((c^(1/8)*x^(1/2))/(-a)^(1/8))/(16*(-a)^(9/8)*c^(7/8)) - (atan((c^(1/8)*x^(1/2
)*1i)/(-a)^(1/8))*1i)/(16*(-a)^(9/8)*c^(7/8)) - (2^(1/2)*atan((2^(1/2)*c^(1/8)*x^(1/2)*(1/2 - 1i/2))/(-a)^(1/8
))*(1/32 - 1i/32))/((-a)^(9/8)*c^(7/8)) - (2^(1/2)*atan((2^(1/2)*c^(1/8)*x^(1/2)*(1/2 + 1i/2))/(-a)^(1/8))*(1/
32 + 1i/32))/((-a)^(9/8)*c^(7/8))

________________________________________________________________________________________